bpc是什么意思| 蜜蜂吃什么食物| 不显怀的人有什么特点| 震颤是什么症状| 什么人不能喝大麦茶| 孕妇吃梨有什么好处| 骨密度低吃什么药最快| 搭档是什么意思| 本田的高端品牌是什么| 医生停诊是什么意思| 吃什么凉血效果最好| 不什么不什么| 清热燥湿是什么意思| 软著有什么用| 苛捐杂税是什么生肖| 鼻梁有痣代表什么| 什么是风水| 紫癜挂什么科| 女属蛇的和什么属相最配| 冬虫夏草有什么功效与作用| 挂面是什么面| lil是什么意思| 喝老陈醋有什么好处| 猝死什么意思| cn是什么意思二次元| 牙龈萎缩 用什么牙膏好| 花生对胃有什么好处| 爱马仕是什么品牌| 观音菩萨是保佑什么的| 不可名状的名是什么意思| 类风湿是什么病| 眼睛近视缺什么维生素| 徐州有什么好玩的| adidas是什么品牌| 胆固醇什么意思| review是什么意思| 闯空门什么意思| 汉武帝属什么生肖| 樟脑丸是干什么的| 爱趴着睡觉是什么原因| 瞌睡多什么原因| 代肝是什么意思| 什么是胆囊炎| 手麻脚麻是什么原因引起的| 跳票什么意思| 过度纵欲的后果是什么| 耳垂上有痣代表什么| 易烊千玺是什么星座| 深圳有什么好吃的| 羊五行属什么| 人打嗝是什么原因| 什么的水| 拾到什么意思| 什么人不适合种植牙| 吊销驾驶证是什么意思| 阴道是什么味道| 女人梦见掉头发是什么征兆| 婷婷玉立什么意思| 孩子呕吐是什么原因| 乌灵胶囊有什么副作用| 生长激素由什么分泌| 什么是化石| 流产吃什么药可以堕胎| 女性胃炎有什么症状| 3月是什么季节| 血压高是什么原因引起的| 番茄酱和番茄沙司有什么区别| 眼皮黑是什么原因| 胃食管反流用什么药| 爱生闷气的人容易得什么病| 手淫过度会导致什么| 妇科和妇产科有什么区别| 天月二德是什么意思| 猪砂是什么东西| 清心寡欲什么意思| 社保基数什么时候调整| gst是什么意思| 1870年是什么朝代| 氨咖黄敏胶囊是治什么的| 2008年属鼠是什么命| 鼎字五行属什么| 色弱和色盲有什么区别| 血小板低是什么引起的| 扁平疣是什么原因造成的| 吃什么补营养最快| 混纺棉是什么面料| 去鱼腥味最好的方法是什么| 骂人是什么意思| 中将相当于什么级别| 视力矫正是什么意思| 金水宝胶囊有什么作用| 甜叶菊有什么功效| 摧枯拉朽是什么意思| 什么叫心悸| 牛刀割鸡是什么生肖| 身上没长什么就是干痒| 藏红花能治什么病| 盲盒是什么意思| 山西属于什么地区| 尿带血是什么原因| 鼹鼠是什么动物| 胆囊壁毛糙是什么意思| 排卵期同房要注意什么| 婚检是什么意思| 雅蠛蝶什么意思| 2006年出生属什么| 澎湃是什么意思| 下午两点是什么时辰| 胎位lop是什么意思| 喝石斛水有什么禁忌| 碳酸钙d3颗粒什么时候吃最好| 手一直抖是什么原因| 毓字五行属什么| 老虎属于什么科动物| 青光眼用什么眼药水| 尿毒症是什么原因引起的| graff是什么牌子| se是什么| 阿哥是什么意思| 来月经肚子疼是什么原因| 身上长红点是什么原因| 撤退性出血是什么颜色| 右胸上部隐痛什么原因| 吃什么清肝火最快| 黄菡和黄澜什么关系| 251什么意思| 98什么意思| 敏感肌是什么意思| 老年人爱出汗是什么原因| 茜草别名又叫什么| 鹿晗什么星座| 炎性肉芽肿是什么意思| 菊花可以和什么一起泡水喝| 大姨妈来了吃什么| gn什么意思| 摩罗丹主要治什么胃病| 牙龈萎缩吃什么药见效快| 疤痕增生是什么原因| 隅读什么| 什么意思| 无利不起早是什么意思| 梦见摘果子是什么意思| 胸腔积液叩诊什么音| 好久不见是什么意思| 眼睛痒是什么原因| 体重什么时候称最准确| 属马的跟什么属相犯冲| 沙土地适合种什么农作物| 大庭广众什么意思| 心肌缺血吃什么药效果最好| 66年属马是什么命| 血压低是什么症状| 皮肤黄适合穿什么颜色的衣服| candies什么意思| 51号元素是什么意思| chd是什么意思| 樟脑是什么东西| 心脏搭桥和支架有什么区别| 性功能障碍吃什么药| 李白号称什么| 开放性骨折是什么意思| 三个土什么字| 炎细胞浸润是什么意思| 指甲空了是什么原因| 甘油三酯高吃什么药| 心律不齐吃什么药最快| 11月17日什么星座| 季字五行属什么| 男性染色体是什么| 茱萸什么意思| 飞蛾飞进家里预示什么| 四方草地是什么生肖| cas号是什么| 这个梗是什么意思| 什么作用| 芈月是秦始皇什么人| 五郎属什么生肖| 苦瓜为什么是苦的| 生物学父亲是什么意思| 早孕期间吃什么最营养| 后背酸痛是什么原因| 什么是慢阻肺| 肝囊肿有什么症状表现| 转氨酶高说明什么| 受热了有什么症状| 对偶句是什么意思| 早上手肿胀是什么原因| 二月十七是什么星座| 另煎兑服是什么意思| 驾照c2能开什么车| 11月23日是什么星座| 液蜡是什么| 心脏不好挂什么科室| 拉屎酸臭是什么原因| 什么什么迷人| 体检报告都检查什么| 西米是什么东西做的| 高血压吃什么盐比较好| 什么是元气| 八项药是什么药| 耳朵背后有痣代表什么| 竖中指是什么意思| 左侧肋骨下面是什么器官| 囧途什么意思| 重色轻友是什么意思| 什么食物对眼睛好| 情劫是什么| 阿飘是什么意思| 什么的微风填空| 老年痴呆吃什么药| 免疫力低挂什么科| 脸上黑色的小点是什么| 什么食物含dha| 反颌是什么意思| 核磁和ct有什么区别| 家里为什么会有隐翅虫| 腮腺炎吃什么药好| 过去式加什么| 落汤鸡是什么意思| 6月23号是什么星座| 意尔康属于什么档次| 胸腔积液是什么原因引起的| 长期喝蜂蜜水有什么好处| 可爱的动物是什么生肖| 谁与争锋是什么意思| 拔罐有什么作用和功效| 什么是螨虫型痘痘图片| 小时的单位是什么| c位是什么意思| 查艾滋病挂什么科| 涉三什么意思| 文化大革命什么时候| 等闲识得东风面下一句是什么| 一个黑一个俊的右边念什么| 哲字五行属什么| 中国的四大发明是什么| 解表化湿是什么意思| 维生素b族什么时候吃| 结节性红斑吃什么药| 咖啡色配什么颜色好看| 气短是什么症状| 糖霜是什么| 常吃大蒜有什么好处| 心仪的人是什么意思| 冲锋衣三合一是什么意思| 有机玻璃是什么| 康复治疗学是做什么的| 每天吃黄瓜有什么好处| 什么叫微创手术| 植物都有什么| 齐多夫定片是治什么病的| 大便是黑色的是什么原因| 打嗝放屁多是什么原因| 什么情况下需要打狂犬疫苗| 生地麦冬汤有什么功效| 四五行属什么| 尿血什么原因| 蛛网膜囊肿是什么病| 痞满是什么意思| MECT是什么| 胃不消化吃什么药效果最好| 苋菜长什么样| 埋线是什么| 腮腺炎挂什么科| 百度Jump to content

“研学旅行”走进重庆黔江区 亦学亦乐心欢畅

From Wikiversity
百度 女子选手的参赛让外界看到了电竞运动在女性中的快速发展,也有女性从事这项运动面临的尴尬。

A well-behaved function can be expanded into a power series. This means that for all non-negative integers there are real numbers such that

Let us calculate the first four derivatives using :

Setting equal to zero, we obtain

Let us write for the -th derivative of  We also write — think of as the "zeroth derivative" of  We thus arrive at the general result where the factorial  is defined as equal to 1 for and and as the product of all natural numbers for Expressing the coefficients in terms of the derivatives of at we obtain

This is the Taylor series for 

A remarkable result: if you know the value of a well-behaved function and the values of all of its derivatives at the single point then you know at all points  Besides, there is nothing special about so is also determined by its value and the values of its derivatives at any other point :

Examples

[edit | edit source]

cos(x)

[edit | edit source]



Some basic checking:

arctan(x)

[edit | edit source]

. See .

Second derivative y″

[edit | edit source]

Third derivative y111

[edit | edit source]

(continued)

[edit | edit source]

If you continue to calculate derivatives, you will produce the following sequence:


Some basic checking:

Also,

Show that

or that

If abs

Figure 1: Graph of Taylor series representing for close to

In the diagram to the right, is the Taylor series representing for close to

In the box above the proof that is an accurate representation of is valid for abs

When abs the diagram vividly illustrates that the series rapidly diverges.

To be accurate, the line should be rad or meaning radians. In theoretical work a value such as is understood to be radians or meaning degrees.

In practice

[edit | edit source]

The expansion of above is theoretically valid for However, if is close to the calculation of will take forever.

This section uses so that is small enough to make time of calculation acceptable.


Let To calculate

Using the half-angle formula

calculate and


This value was chosen for because is close to For approx.

If the code below is accurate to places of decimals.


This section uses the whole sequence of derivatives:

where

where

where

where and so on.


Using

then and:

Figure 1: Graph of Taylor series representing for close to
close to
rad.
y = 0.6414085001079161195194563572
+(0.6420076723519613087221948458)(x-(0.7467354177837216717375001402))
+(-0.3077848130939266477182675970)(x-0.7467354177837216717375001402)^2
+(0.05934881813852229894809158807)(x-0.7467354177837216717375001402)^3
+(0.05612149216561873709345633871)(x-0.7467354177837216717375001402)^4
+(-0.0659097533448882821311588572)(x-0.7467354177837216717375001402)^5
+(0.02864269115336634046783964776)(x-0.7467354177837216717375001402)^6
+(0.006684824489389227404750195292)(x-0.7467354177837216717375001402)^7
+(-0.01939996954693863883077829889)(x-0.7467354177837216717375001402)^8
+(0.01319629210955273736079467214)(x-0.7467354177837216717375001402)^9
+(-0.001423635337528918097834676738)(x-0.7467354177837216717375001402)^10
+(-0.005690817314508170664127596721)(x-0.7467354177837216717375001402)^11
+(0.005763416294060825609852171147)(x-0.7467354177837216717375001402)^12
+(-0.002009530403041012685757678258)(x-0.7467354177837216717375001402)^13
+(-0.001382413103546475118963526286)(x-0.7467354177837216717375001402)^14
+(0.002355235379425975362106687309)(x-0.7467354177837216717375001402)^15
+(-0.001340525935442931206538139095)(x-0.7467354177837216717375001402)^16
+(-0.0001244720120416846251034920203)(x-0.7467354177837216717375001402)^17
+(0.0008777184853106580549638629701)(x-0.7467354177837216717375001402)^18
+(-0.0007257802485492202930793702930)(x-0.7467354177837216717375001402)^19
+(0.0001539460026510816727324277808)(x-0.7467354177837216717375001402)^20
+(0.0002810020934892180446689969911)(x-0.7467354177837216717375001402)^21
+(-0.0003470330774958963760466009045)(x-0.7467354177837216717375001402)^22
+(0.0001535570475871531716152621841)(x-0.7467354177837216717375001402)^23
+(0.00006313260945054237374661397478)(x-0.7467354177837216717375001402)^24
+(-0.0001488094986598041280906554962)(x-0.7467354177837216717375001402)^25
+(0.00009977993191704606200503722720)(x-0.7467354177837216717375001402)^26
+(-0.000003667561779685224841381874106)(x-0.7467354177837216717375001402)^27
+(-0.00005609286432922550484209657985)(x-0.7467354177837216717375001402)^28
+(0.00005412057738460028511566507574)(x-0.7467354177837216717375001402)^29
+(-0.00001655090242419904039018979491)(x-0.7467354177837216717375001402)^30
+(-0.00001714674178231985986067601799)(x-0.7467354177837216717375001402)^31
+(0.00002588855802866968641107644970)(x-0.7467354177837216717375001402)^32
+(-0.00001372909690493026279553133838)(x-0.7467354177837216717375001402)^33
+(-0.000002866406864208033772447118585)(x-0.7467354177837216717375001402)^34
+(0.00001098036048658105543109288040)(x-0.7467354177837216717375001402)^35
+(-0.000008497717911244361532280438636)(x-0.7467354177837216717375001402)^36
+(0.000001259146436001274560243296183)(x-0.7467354177837216717375001402)^37
+(0.000003992939704019955177003526706)(x-0.7467354177837216717375001402)^38
+(-0.000004497268683100848779169934291)(x-0.7467354177837216717375001402)^39
+(0.000001768945188244137235636524921)(x-0.7467354177837216717375001402)^40
+(0.000001091706749083768850937760502)(x-0.7467354177837216717375001402)^41
+(-0.000002103423912310375893571195410)(x-0.7467354177837216717375001402)^42
+(0.000001301617082996039555612971998)(x-0.7467354177837216717375001402)^43
+(6.937967909808721515382339295E-8)(x-0.7467354177837216717375001402)^44
+(-8.635525611989332402947366709E-7)(x-0.7467354177837216717375001402)^45
+(7.673857631132879175874596987E-7)(x-0.7467354177837216717375001402)^46
+(-1.893140553441536683377149770E-7)(x-0.7467354177837216717375001402)^47
+(-2.944033068289732156296704644E-7)(x-0.7467354177837216717375001402)^48
+(3.930991061512879804635643270E-7)(x-0.7467354177837216717375001402)^49
+(-1.879241426421737899718180888E-7)(x-0.7467354177837216717375001402)^50

A faster version
[edit | edit source]

The calculation of above is suitable as input to application grapher.

The following python code has precision set to If it is desired to calculate for one value of the following python code is much faster than the code supplied to grapher above.

python code
[edit | edit source]
data = '''
0.641408500107916119519456357419567
0.642007672351961308722194845349589
-0.307784813093926647718267596858344
0.0593488181385222989480915882567083
0.0561214921656187370934563384765525
-0.0659097533448882821311588570897649
0.0286426911533663404678396477942956
0.00668482448938922740475019519860028
-0.0193999695469386388307782988276083
0.0131962921095527373607946721380589
-0.00142363533752891809783467677853379
-0.00569081731450817066412759667853352
0.00576341629406082560985217113222417
-0.00200953040304101268575767827219472
-0.00138241310354647511896352626325379
0.00235523537942597536210668729668636
-0.00134052593544293120653813909608214
-0.000124472012041684625103492011289663
0.000877718485310658054963862962235904
-0.000725780248549220293079370291315901
0.000153946002651081672732427784261987
0.000281002093489218044668996986822804
-0.000347033077495896376046600902527326
0.000153557047587153171615262184995174
0.0000631326094505423737466139726989411
-0.000148809498659804128090655494778209
0.0000997799319170460620050372271284211
-0.00000366756177968522484138187499300975
-0.0000560928643292255048420965789718678
0.0000541205773846002851156650754617952
-0.0000165509024241990403901897952115479
-0.0000171467417823198598606760175136922
0.0000258885580286696864110764494276036
-0.0000137290969049302627955313384274982
-0.00000286640686420803377244711837064614
0.0000109803604865810554310928802164877
-0.00000849771791124436153228043859514619
0.00000125914643600127456024329626150593
0.00000399293970401995517700352660353714
-0.00000449726868310084877916993424187367
0.00000176894518824413723563652493847337
0.00000109170674908376885093776045369610
-0.00000210342391231037589357119537437086
0.00000130161708299603955561297199526169
6.93796790980872151538233731691180E-8
-8.63552561198933240294736649885292E-7
7.67385763113287917587459691270367E-7
-1.89314055344153668337714983394592E-7
-2.94403306828973215629670453652457E-7
3.93099106151287980463564320621599E-7
-1.87924142642173789971818089630347E-7
'''

from decimal import *
getcontext().prec=33

listOfMultipliers  = [ Decimal(v) for v in data.split() ]

def arctan (x) :
    x = Decimal(str(x))
    if 1.05 >= x >= 0.45 : pass
    else : print ('\narctan(x): input is outside recommended range.',end='')
    y = Decimal(0)
    x0 = Decimal('0.746735417783721671737500140715213') # tan36.75
    x_minus_x0 = x - x0
    X = Decimal(1)
    status = 1
    for p in range(0,51) :
        toBeAdded = listOfMultipliers[p] * X
        if abs(toBeAdded) < Decimal('1e-31') :
            status = 0
            break
        y += toBeAdded
        X *= x_minus_x0
    if status :
        print ('\narctan(x): count expired.', end='')
    str1 = '''
arctan({}) = {}, count = {}
'''.format(x,y,p)
    print (str1.rstrip())
    return y

x close to x0
[edit | edit source]
x = Decimal('0.75')
arctan(x)

arctan(0.75) = 0.643501108793284386802809228717315, count = 12

When is close to result is achieved with only 12 passes through loop.

Testing with known values
[edit | edit source]

Check results using known combinations of and

For and other exact values of see Exact Values for Common Angles.

π = "3.14159265358979323846264338327950288419716939937510582097494459230781"
π = Decimal(π)
rt3 = Decimal(3).sqrt()
rt5 = Decimal(5).sqrt()
rt15 = Decimal(15).sqrt()

tan27 = rt5 - 1 - (5 - 2*rt5).sqrt()

tan30 = 1/rt3

v1 = 2 - (2-rt3)*(3+rt5) ; v2 = 2+ (2*(5-rt5)).sqrt()
tan33 = v1*v2/4

tan36 = (5-2*rt5).sqrt()

v1 = (2-rt3)*(3-rt5)-2 ; v2 = 2 - (2*(5+rt5)).sqrt()
tan39 = v1*v2/4

tan42 = ( rt15 + rt3 - (10 + 2*rt5).sqrt() )/2

tan45 = Decimal(1)

values = (
    ( 9*π/60, tan27, 27),
    (10*π/60, tan30, 30),
    (11*π/60, tan33, 33),
    (12*π/60, tan36, 36),
    (13*π/60, tan39, 39),
    (14*π/60, tan42, 42),
    (   π/ 4, tan45, 45),
)

for value in values :
    angleInRadians, tan, angleInDegrees = value
    y = arctan(tan)
    print ('for', angleInDegrees, 'degrees, difference =',  angleInRadians-y)

arctan(0.509525449494428810513706911250666) = 0.471238898038468985769396507491970, count = 41
for 27 degrees, difference = -4.5E-32

arctan(0.577350269189625764509148780501958) = 0.523598775598298873077107230546614, count = 34
for 30 degrees, difference = -3.1E-32

arctan(0.649407593197510576982062911311432) = 0.575958653158128760384817953601229, count = 27
for 33 degrees, difference = 1.3E-32

arctan(0.726542528005360885895466757480614) = 0.628318530717958647692528676655896, count = 17
for 36 degrees, difference = 4E-33

arctan(0.809784033195007148036991374235772) = 0.680678408277788535000239399710521, count = 23
for 39 degrees, difference = 3.7E-32

arctan(0.90040404429783994512047720388537) = 0.733038285837618422307950122765236, count = 33
for 42 degrees, difference = -1.9E-32

arctan(1) = 0.785398163397448309615660845819846, count = 43
for 45 degrees, difference = 3.0E-32

[edit | edit source]
tan24 = ( (50+22*rt5).sqrt() - 3*rt3 - rt15 ) / 2
tan46_5 = Decimal('1.05378012528096218058753672331544') # tan(46.5) 

values = (
    (24*π/180,   tan24,   24),
    (93*π/360, tan46_5, 46.5),
)

for value in values :
    angleInRadians, tan, angleInDegrees = value
    y = arctan(tan)
    print ('for x =', float(tan), 'difference =',  angleInRadians-y)

arctan(x): input is outside recommended range.
arctan(0.44522868530853616392236703064567) = 0.418879020478639098461685784437249, count = 47
for x = 0.44522868530853615 difference = 1.8E-32

arctan(x): input is outside recommended range.
arctan(1.05378012528096218058753672331544) = 0.811578102177363253269516207347250, count = 48
for x = 1.0537801252809622 difference = -4.4E-32

For the above calculation of is accurate to more than 30 places of decimals.

[edit | edit source]

If input is outside recommended limits, this does not necessarily mean that result is invalid.

If result is accurate to precision of python floats, 15 places of decimals.

arcsin(x)

[edit | edit source]

Simple differential equations eliminate the square root and make calculations so much easier.

Let

Then where and


Differentiating both sides:

Let

Then


Differentiating both sides:

Let

Then


When Calculation of more derivatives yields:

and so on.




As programming algorithm:

[edit | edit source]


As implemented in Python:

[edit | edit source]
from decimal import * # Default precision is 28.

π = ("3.14159265358979323846264338327950288419716939937510582097494459230781")
π = Decimal(π)

x = Decimal(2).sqrt()/2 # Expecting result of π/4

xSQ = x*x
X = x*xSQ

top = Decimal(1)
bottom = Decimal(2)

bottom1 = bottom*3
sum = x + X*top / bottom1

status = 1
for n in range(5,200,2) :
    X = X*xSQ
    top = top*(n-2)
    bottom = bottom*(n-1)
    bottom1 = bottom*n
    added = X*top/bottom1
    if (added < 1e-29) :
        status = 0
        break
    sum += added

if status :
    print ('error. count expired.')
else :
    print (x, sum==π/4, n)
0.707106781186547524400844362 True 171

In practice

[edit | edit source]

If is close to the calculation of will take forever.


If you limit to then and each term is guaranteed to be less than half the preceding term.


If let

Then

Integral of expression

[edit | edit source]

According to the reference "this expression cannot be integrated..." However, if we convert the expression to a Taylor series, the integral of the series is quite easily calculated.

Let

When and the following sequence can be produced.

where

and so on.

Taylor series of for close to

where

For python code produces the following:

c02 = -0.6931471805599453094172321215
c04 = 0.2402265069591007123335512632
c06 = -0.05550410866482157995314226378
c08 = 0.009618129107628477161979071575
c10 = -0.001333355814642844342341222199
c12 = 0.0001540353039338160995443709734
c14 = -0.00001525273380405984028002543902
c16 = 0.000001321548679014430948840375823
c18 = -1.017808600923969972749000760E-7
c20 = 7.054911620801123329875392184E-9
c22 = -4.445538271870811497596408561E-10
c24 = 2.567843599348820514199480240E-11
c26 = -1.369148885390412888089195400E-12
c28 = 6.778726354822545633449104318E-14
c30 = -3.132436707088428621634944443E-15
c32 = 1.357024794875514719311296624E-16
c34 = -5.533046532458242043485546100E-18
c36 = 2.130675335489117996020398479E-19
c38 = -7.773008428857356419088997166E-21
c40 = 2.693919438465583416972861154E-22
c42 = -8.891822206800239171648619811E-24

For close to or close to the Taylor series is a quite accurate representation of the original expression. When abs the abs(maximum difference) between expression and Taylor series is

For greater accuracy, greater precision may be specified in python or more terms after may be added.

The integral

where

Figure 1: Curves of and where is Taylor series representing for close to .

In figure to right, separating from to illustrate shapes of curves.

The correct value of .

When and .

To 24 places of decimals _____.

Figure 1: Curves of and where is integral of and represents integral of for close to .
In this example, constant of integration

If it were important to calculate the area under from to returns accurate to about 26 places of decimals.

sin(x) using (x - x0)

[edit | edit source]

Let

Let

Then

where is the Taylor series representing for values of close to or

If , then containing powers of through is sufficient to keep the error to

[edit | edit source]

Almost a sine curve

[edit | edit source]
Figure 1: Graph of representing for close to .

Graph to right was produced by Grapher on a Mac.

A python script produced the following data:

( (2^(0.5))/2 )(
 1  +(x-.785398163397448)

 -((x-.785398163397448)^2)/2
 -((x-.785398163397448)^3)/(2(3))

 +((x-.785398163397448)^4)/(24)
 +((x-.785398163397448)^5)/(120)

 -((x-.785398163397448)^6)/(720)
 -((x-.785398163397448)^7)/(5040)

 +((x-.785398163397448)^8)/(40320)
 +((x-.785398163397448)^9)/(362880)

 -((x-.785398163397448)^10)/(3628800)
 -((x-.785398163397448)^11)/(39916800)

 +((x-.785398163397448)^12)/(479001600)
 +((x-.785398163397448)^13)/(6227020800)

 -((x-.785398163397448)^14)/(87178291200)
 -((x-.785398163397448)^15)/(1307674368000)

 +((x-.785398163397448)^16)/(20922789888000)
 +((x-.785398163397448)^17)/(355687428096000)

 -((x-.785398163397448)^18)/(6402373705728000)
 -((x-.785398163397448)^19)/(121645100408832000)

 +((x-.785398163397448)^20)/(2432902008176640000)
 +((x-.785398163397448)^21)/(51090942171709440000)

 -((x-.785398163397448)^22)/(1124000727777607680000)
 -((x-.785398163397448)^23)/(25852016738884976640000)

 +((x-.785398163397448)^24)/(620448401733239439360000)
 +((x-.785398163397448)^25)/(15511210043330985984000000)

 -((x-.785398163397448)^26)/(403291461126605635584000000)
 -((x-.785398163397448)^27)/(10888869450418352160768000000)

 +((x-.785398163397448)^28)/(304888344611713860501504000000)
 +((x-.785398163397448)^29)/(8841761993739701954543616000000)
)

I highlighted the data, copied it with command C and pasted it into the input area of Grapher. Well done! Grapher.

Integral of 1/x

[edit | edit source]

The Taylor series for for close to is:

The integral of this series is:

The integral of

Therefore but what is the value of

Without when should be

Therefore, for close to

where

But what is the value of

Without when should be

Therefore or

For close to

where

Figure 1: Graph of representing for close to .
y = 0.693147180559945
+ ((1/(2^1))/1)(x - 2)^1
- ((1/(2^2))/2)(x - 2)^2
+ ((1/(2^3))/3)(x - 2)^3
- ((1/(2^4))/4)(x - 2)^4
+ ((1/(2^5))/5)(x - 2)^5
- ((1/(2^6))/6)(x - 2)^6
+ ((1/(2^7))/7)(x - 2)^7
...........................
...........................
- ((1/(2^42))/42)(x - 2)^42
+ ((1/(2^43))/43)(x - 2)^43
- ((1/(2^44))/44)(x - 2)^44
+ ((1/(2^45))/45)(x - 2)^45
- ((1/(2^46))/46)(x - 2)^46
+ ((1/(2^47))/47)(x - 2)^47
- ((1/(2^48))/48)(x - 2)^48
+ ((1/(2^49))/49)(x - 2)^49

Generally, for close to

Calculating ln(x)

[edit | edit source]

This section presents a system for calculating for knowing only that

# python code
L1 = [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 
    3.0, 3.3, 3.6, 3.9, 4.2, 4.6, 5.0, 5.5, 6.0, 6.6, 7.2, 7.9, 8.6, 9.3, 10.0]

where L1 is a list containing values of in which each value after the first is % more than the preceding value.

# python code
from decimal import *
getcontext().prec=53 # Preparing for values containing 50 places of decimals.
almostZero = Decimal('1e-' + str( getcontext().prec ))

L1 = [ Decimal(str(v)) for v in L1 ]

def ln_x (x, x0, C=0) :
    '''
    return ln(x) for x close to x0.
    ln_x_ = ln_x (x, x0, C) 
    C is the constant of integration. Usually C = ln(x0).
    '''
    x, x0, C = [ Decimal(str(v)) for v in (x,x0,C) ]
    x_minus_x0 = x-x0;
#    print ('x,x0,x_minus_x0 =',x,x0,x_minus_x0)
    sum = 0
    progressiveValue = 1
    status = 1 ; limit = 4*getcontext().prec
    multiplier = x_minus_x0/x0
    for p in range (1, limit, 2) :
        progressiveValue *= multiplier
        added = progressiveValue / p
        sum += added

        progressiveValue *= multiplier
        added = progressiveValue / (p+1)

        if (abs(added) < almostZero) :
            status = 0
            break
        sum -= added
    if (status) :
        print ('ln_x error: count expired, p =',p)
        exit (95)
    return sum+C

The performance of the above code is better than logarithmic to base . This means, for example, if contains 60 significant decimal digits, the above code produces a result with fewer than 30 passes through the loop because each iteration of the lop performs two operations.

L1 is designed so that multiplier is always When is very close to time to calculate is greatly reduced.

Figure 1: Graph of representing for close to .
When value the series diverges.
In this case, when
y = ln(7.9)
+ ((1/((7.9)^(1)))/(1))((x - 7.9)^(1))
- ((1/((7.9)^(2)))/(2))((x - 7.9)^(2))
+ ((1/((7.9)^(3)))/(3))((x - 7.9)^(3))
- ((1/((7.9)^(4)))/(4))((x - 7.9)^(4))
+ ((1/((7.9)^(5)))/(5))((x - 7.9)^(5))
- ((1/((7.9)^(6)))/(6))((x - 7.9)^(6))
+ ((1/((7.9)^(7)))/(7))((x - 7.9)^(7))
- ((1/((7.9)^(8)))/(8))((x - 7.9)^(8))
+ ((1/((7.9)^(9)))/(9))((x - 7.9)^(9))
.....................
.....................
- ((1/((7.9)^(22)))/(22))((x - 7.9)^(22))
+ ((1/((7.9)^(23)))/(23))((x - 7.9)^(23))
- ((1/((7.9)^(24)))/(24))((x - 7.9)^(24))
+ ((1/((7.9)^(25)))/(25))((x - 7.9)^(25))
- ((1/((7.9)^(26)))/(26))((x - 7.9)^(26))
+ ((1/((7.9)^(27)))/(27))((x - 7.9)^(27))
- ((1/((7.9)^(28)))/(28))((x - 7.9)^(28))
+ ((1/((7.9)^(29)))/(29))((x - 7.9)^(29))

The next piece of code progressively calculates and puts the calculated values in dictionary dict2.

dict2 = dict()
dict2[Decimal('1.0')] = Decimal(0)

for p in range(1, len(L1)) :
    x = L1[p]
    x0 = L1[p-1]
    C = dict2[x0]
#    print ('L1[{}]={}'.format(p,L1[p]))
    ln = ln_x (x, x0, C)
    dict2[x] = ln

print ('dict2 = {')
for x0 in dict2 :
    print ("Decimal('{}'):  +Decimal('{}'),".format( (' '+str(x0))[-4:], dict2[x0]) )
print ('}')
dict2 = {
Decimal(' 1.0'):  +Decimal('0'),
Decimal(' 1.1'):  +Decimal('0.095310179804324860043952123280765092220605365308644199'),
Decimal(' 1.2'):  +Decimal('0.18232155679395462621171802515451463319738933791448698'),
Decimal(' 1.3'):  +Decimal('0.26236426446749105203549598688095439720416645613143414'),
Decimal(' 1.4'):  +Decimal('0.33647223662121293050459341021699209011148337531334347'),
Decimal(' 1.5'):  +Decimal('0.40546510810816438197801311546434913657199042346249420'),
Decimal(' 1.6'):  +Decimal('0.47000362924573555365093703114834206470089904881224805'),
Decimal(' 1.7'):  +Decimal('0.53062825106217039623154316318876232798710152395697182'),
Decimal(' 1.8'):  +Decimal('0.58778666490211900818973114061886376976937976137698120'),
Decimal(' 1.9'):  +Decimal('0.64185388617239477599103597720348932963627777267035586'),
Decimal(' 2.0'):  +Decimal('0.69314718055994530941723212145817656807550013436025527'),
Decimal(' 2.2'):  +Decimal('0.78845736036427016946118424473894166029610549966889947'),
Decimal(' 2.4'):  +Decimal('0.87546873735389993562895014661269120127288947227474225'),
Decimal(' 2.6'):  +Decimal('0.95551144502743636145272810833913096527966659049168941'),
Decimal(' 2.8'):  +Decimal('1.0296194171811582399218255316751686581869835096735987'),
Decimal(' 3.0'):  +Decimal('1.0986122886681096913952452369225257046474905578227494'),
Decimal(' 3.3'):  +Decimal('1.1939224684724345514391973602032907968680959231313936'),
Decimal(' 3.6'):  +Decimal('1.2809338454620643176069632620770403378448798957372364'),
Decimal(' 3.9'):  +Decimal('1.3609765531356007434307412238034801018516570139541836'),
Decimal(' 4.2'):  +Decimal('1.4350845252893226218998386471395177947589739331360929'),
Decimal(' 4.6'):  +Decimal('1.5260563034950493162059934985840084789167789605719180'),
Decimal(' 5.0'):  +Decimal('1.6094379124341003746007593332261876395256013542685177'),
Decimal(' 5.5'):  +Decimal('1.7047480922384252346447114565069527317462067195771619'),
Decimal(' 6.0'):  +Decimal('1.7917594692280550008124773583807022727229906921830047'),
Decimal(' 6.6'):  +Decimal('1.8870696490323798608564294816614673649435960574916489'),
Decimal(' 7.2'):  +Decimal('1.9740810260220096270241953835352169059203800300974917'),
Decimal(' 7.9'):  +Decimal('2.0668627594729758101549540867970467145724397357938367'),
Decimal(' 8.6'):  +Decimal('2.1517622032594620488720831801196593960335348306130377'),
Decimal(' 9.3'):  +Decimal('2.2300144001592102533064181067805187074963279996745685'),
Decimal('10.0'):  +Decimal('2.3025850929940456840179914546843642076011014886287730'),
}

A quick check:

ln(2.2) - (ln(1.1) + ln(2.0)) = 0E-50
ln(2.4) - (ln(1.2) + ln(2.0)) = 0E-50
ln(2.6) - (ln(1.3) + ln(2.0)) = 0E-50
ln(2.8) - (ln(1.4) + ln(2.0)) = 0E-50
ln(3.0) - (ln(1.5) + ln(2.0)) = -0E-50
ln(3.3) - (ln(1.1) + ln(3.0)) = 0E-50
ln(3.6) - (ln(1.2) + ln(3.0)) = 0E-50
ln(3.6) - (ln(1.8) + ln(2.0)) = -0E-50
ln(3.9) - (ln(1.3) + ln(3.0)) = 0E-50
ln(4.2) - (ln(1.4) + ln(3.0)) = 0E-50
ln(5.5) - (ln(1.1) + ln(5.0)) = 0E-50
ln(6.0) - (ln(1.2) + ln(5.0)) = 0E-50
ln(6.0) - (ln(2.0) + ln(3.0)) = 0E-50
ln(6.6) - (ln(1.1) + ln(6.0)) = 0E-50
ln(6.6) - (ln(2.2) + ln(3.0)) = 0E-50
ln(6.6) - (ln(3.3) + ln(2.0)) = 0E-50
ln(7.2) - (ln(1.2) + ln(6.0)) = 0E-50
ln(7.2) - (ln(2.4) + ln(3.0)) = 0E-50
ln(10.0) - (ln(5.0) + ln(2.0)) = 0E-50

Put the data from dict2 into 2 tuples Tx0, Tln_x0

Tx0 = tuple(L1)
Tln_x0 = tuple([ dict2[v] for v in Tx0 ])

Calculate the decision points.

L1 = []
for p in range (0, len(Tx0)-1) :
    a,b = Tx0[p], Tx0[p+1]
    dp = 2*a*b/(a+b)
    L1 += [ dp ]
Tdp = tuple(L1)

Display the three tuples.

for T in ('Tx0', 'Tln_x0', 'Tdp') :
    t = eval(T)
    print (T, '= (')
    for v in t :
        print ("""+Decimal('{}'),""".format(v))
    print (')')
    print ()

Previous code was used to produce three tuples. Operational code follows:


Values of

Tx0 = ( Decimal('1'), Decimal('1.1'), Decimal('1.2'), Decimal('1.3'), Decimal('1.4'), Decimal('1.5'), Decimal('1.6'), Decimal('1.7'), Decimal('1.8'), Decimal('1.9'), Decimal('2.0'), Decimal('2.2'), Decimal('2.4'), Decimal('2.6'), Decimal('2.8'), Decimal('3.0'), Decimal('3.3'), Decimal('3.6'), Decimal('3.9'), Decimal('4.2'), Decimal('4.6'), Decimal('5.0'), Decimal('5.5'), Decimal('6.0'), Decimal('6.6'), Decimal('7.2'), Decimal('7.9'), Decimal('8.6'), Decimal('9.3'), Decimal('10.0'), )


Values of

Tln_x0 = ( +Decimal('0'), +Decimal('0.095310179804324860043952123280765092220605365308644199'), +Decimal('0.18232155679395462621171802515451463319738933791448698'), +Decimal('0.26236426446749105203549598688095439720416645613143414'), +Decimal('0.33647223662121293050459341021699209011148337531334347'), +Decimal('0.40546510810816438197801311546434913657199042346249420'), +Decimal('0.47000362924573555365093703114834206470089904881224805'), +Decimal('0.53062825106217039623154316318876232798710152395697182'), +Decimal('0.58778666490211900818973114061886376976937976137698120'), +Decimal('0.64185388617239477599103597720348932963627777267035586'), +Decimal('0.69314718055994530941723212145817656807550013436025527'), +Decimal('0.78845736036427016946118424473894166029610549966889947'), +Decimal('0.87546873735389993562895014661269120127288947227474225'), +Decimal('0.95551144502743636145272810833913096527966659049168941'), +Decimal('1.0296194171811582399218255316751686581869835096735987'), +Decimal('1.0986122886681096913952452369225257046474905578227494'), +Decimal('1.1939224684724345514391973602032907968680959231313936'), +Decimal('1.2809338454620643176069632620770403378448798957372364'), +Decimal('1.3609765531356007434307412238034801018516570139541836'), +Decimal('1.4350845252893226218998386471395177947589739331360929'), +Decimal('1.5260563034950493162059934985840084789167789605719180'), +Decimal('1.6094379124341003746007593332261876395256013542685177'), +Decimal('1.7047480922384252346447114565069527317462067195771619'), +Decimal('1.7917594692280550008124773583807022727229906921830047'), +Decimal('1.8870696490323798608564294816614673649435960574916489'), +Decimal('1.9740810260220096270241953835352169059203800300974917'), +Decimal('2.0668627594729758101549540867970467145724397357938367'), +Decimal('2.1517622032594620488720831801196593960335348306130377'), +Decimal('2.2300144001592102533064181067805187074963279996745685'), +Decimal('2.3025850929940456840179914546843642076011014886287730'), )


Decision points:

Tdp = ( +Decimal('1.0476190476190476190476190476190476190476190476190476'), +Decimal('1.1478260869565217391304347826086956521739130434782609'), +Decimal('1.248'), +Decimal('1.3481481481481481481481481481481481481481481481481481'), +Decimal('1.4482758620689655172413793103448275862068965517241379'), +Decimal('1.5483870967741935483870967741935483870967741935483871'), +Decimal('1.6484848484848484848484848484848484848484848484848485'), +Decimal('1.7485714285714285714285714285714285714285714285714286'), +Decimal('1.8486486486486486486486486486486486486486486486486486'), +Decimal('1.9487179487179487179487179487179487179487179487179487'), +Decimal('2.0952380952380952380952380952380952380952380952380952'), +Decimal('2.2956521739130434782608695652173913043478260869565217'), +Decimal('2.496'), +Decimal('2.6962962962962962962962962962962962962962962962962963'), +Decimal('2.8965517241379310344827586206896551724137931034482759'), +Decimal('3.1428571428571428571428571428571428571428571428571429'), +Decimal('3.4434782608695652173913043478260869565217391304347826'), +Decimal('3.744'), +Decimal('4.0444444444444444444444444444444444444444444444444444'), +Decimal('4.3909090909090909090909090909090909090909090909090909'), +Decimal('4.7916666666666666666666666666666666666666666666666667'), +Decimal('5.2380952380952380952380952380952380952380952380952381'), +Decimal('5.7391304347826086956521739130434782608695652173913043'), +Decimal('6.2857142857142857142857142857142857142857142857142857'), +Decimal('6.8869565217391304347826086956521739130434782608695652'), +Decimal('7.5337748344370860927152317880794701986754966887417219'), +Decimal('8.2351515151515151515151515151515151515151515151515152'), +Decimal('8.9363128491620111731843575418994413407821229050279330'), +Decimal('9.6373056994818652849740932642487046632124352331606218'), )

At each decision point is assigned to the next low value or the next high value of For example, if is between the decision point is This means that the ratio and the maximum value of abs

During creation of Tln_x0 the maximum value of During normal operations after creation of Tln_x0, maximum value of abs between


Choose a suitable value of x0 with the value of its natural log.

def choose_x0_C (x) :
    '''
    (x0, C) = choose_x0_C (x)
    '''
    if (10 >= x >= 1) : pass
    else: exit (93)

    for p in range (len(Tx0)-2, -1, -1):
        if (x >= Tx0[p]) :
            if (x >= Tdp[p]) : return (Tx0[p+1], Tln_x0[p+1])
            return (Tx0[p], Tln_x0[p])
    exit(92)

Ready to calculate, for example,

x = Decimal('3.456789')
(x0, C) = choose_x0_C (x)
ln_x_ = ln_x (x, x0, C)
print ('ln({}) = {}'.format(x, ln_x_.quantize(Decimal('1e-50'))))
ln(3.456789) = 1.24034_01234_96758_02986_53847_82231_30004_00340_53893_89110 # displayed with 50 places of decimals.

Testing ln(x)

[edit | edit source]

Choose random numbers so that

Produce values

Calculate product

Produce value

If and

Verify that

# python code
import random

ln_10 = Tln_x0[-1]
fiftyPlacesOfDecimals = Decimal('1e-50')

def randomNumber() :
    s1 = str(random.getrandbits(getcontext().prec * 4))
    d1 = Decimal(s1[0] + '.' + s1[1:])
    if (d1 == 0) : d1 = randomNumber()
    while (d1 < 1) : d1 *= 10
    return d1

d1 = randomNumber()
d2 = randomNumber()

(x0, C) = choose_x0_C (d1)
ln_d1_ = ln_x (d1, x0, C)

(x0, C) = choose_x0_C (d2)
ln_d2_ = ln_x (d2, x0, C)

product = d1*d2
add_ln10 = 0
if (product > 10) :
    product /= 10
    add_ln10 += 1

(x0, C) = choose_x0_C (product)
ln_product_ = ln_x (product, x0, C)
if (add_ln10) : ln_product_ += ln_10

difference = (ln_product_ - ( ln_d1_ + ln_d2_ )).quantize(fiftyPlacesOfDecimals)

print ('''
d1          = {}
ln_d1_      = {}
d2          = {}
ln_d2_      = {}
ln_product_ = {}
'''.format(
d1,ln_d1_ ,
d2,ln_d2_ ,
ln_product_ ,
))

if difference :  print ('''
difference  = {} ****
'''.format(
difference,
))

For example: During testing, successive invocations of the above code produced:

d1          = 3.300463847393627263496303126765085976697315885228780009201595937
ln_d1_      = 1.1940630184110798505583266934968432937656468440595029
d2          = 4.727915623201914684885711302927600487326893972103794963997766615
ln_d2_      = 1.5534844337520634527664958773360448454701186698422347
ln_product_ = 2.7475474521631433033248225708328881392357655139017377
d1          = 6.56429212435850275252301147228535243835226966080458915176241218
ln_d1_      = 1.8816446762531860392218213681767770852191644273705970
d2          = 8.15468991518212749204100104755219361919087392341006662123706307
ln_d2_      = 2.0985932114606734087366302984138612677420896519457258
ln_product_ = 3.9802378877138594479584516665906383529612540793163228
[edit | edit source]
牙齿什么颜色最健康 coupon是什么意思 副军级是什么级别 dl是什么 考c1驾照需要什么条件
7月2日什么星座 6月底什么星座 梦到自行车丢了是什么意思 眼角疼是什么原因 为什么会得肺炎
汗斑是什么样的图片 乌冬面为什么叫乌冬面 什么什么的玉米 左肾窦分离是什么意思 大三阳是什么意思
5.16号是什么星座 枣子什么时候成熟 室内机漏水是什么原因 云想衣裳花想容是什么意思 什么是虚荣心
痔疮用什么药膏最好hcv8jop5ns9r.cn 痤疮用什么药膏inbungee.com 12月13日是什么星座hcv8jop4ns1r.cn 口腔溃疡是什么jinxinzhichuang.com 老是放屁吃什么药hcv8jop4ns8r.cn
古力娜扎全名叫什么hcv7jop9ns0r.cn 眼珠发黄是什么原因hcv8jop9ns9r.cn 调岗是什么意思hcv7jop7ns4r.cn 天蝎女喜欢什么样的男生hcv8jop8ns0r.cn 女人脚肿是什么原因zhongyiyatai.com
四月十八日是什么日子hcv9jop6ns4r.cn 地球是什么星hcv9jop0ns2r.cn 小孩血糖高是什么原因引起的hcv9jop0ns2r.cn 舌头发麻是什么原因hcv8jop2ns3r.cn 湿疹吃什么中药hcv9jop1ns6r.cn
孙字五行属什么hcv9jop4ns1r.cn paris是什么品牌luyiluode.com 小孩有积食吃什么调理dayuxmw.com 血小板低吃什么水果好hcv9jop0ns9r.cn 肚脐眼下面是什么部位hcv9jop2ns8r.cn
百度